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The hierarchical Bayesian Optimization Algorithm (hBOA) [24, 25] learns bit-

strings by constructing explicit centralized models of a population and using them to

generate new instances. This thesis is concerned with extending hBOA to learning

open-ended program trees. The new system, BOA programming (BOAP), improves

on previous probabilistic model building GP systems (PMBGPs) in terms of the

expressiveness and open-ended flexibility of the models learned, and hence control

over the distribution of individuals generated. BOAP is studied empirically on a toy

problem (learning linear functions) in various configurations, and further experimental

results are presented for two real-world problems: prediction of sunspot time series,

and human gene function inference.
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Chapter 1

Background: GA, GP, and BOA

The Genetic Algorithm (GA), introduced by Holland [13], and Genetic Programming

(GP), introduced by Koza [16], are classic optimization techniques that attempt to

incrementally improve populations of candidate-solutions to maximize a predefined

“fitness function”, using operators inspired by crossover and mutation in biological

evolution. In the GA the candidate-solutions are fixed-length strings, whereas GP

uses variable- sized tree structures. After overviews of GA and GP, we pay a visit

to schema theory, which attempts to explain why GA and GP work, and has moti-

vated the design of the Bayesian Optimization Algorithm [24] (BOA) and hierarchical

Bayesian Optimization Algorithm [25] (hBOA), which are the next stops on the jour-

ney. The initial sections may be skipped by readers with background in evolutionary

computation.

1.1 The Genetic Algorithm

The GA originated as a way of modeling, on an abstract level, the basic mechanisms

of Darwinian evolution with sexual reproduction (selection, crossover, and mutation).

These are defined for the GA as follows:

• Selection is via a predefined fitness function which assigns real values to bit-

strings in the space; the goal of the GA is to find a string which maximizes this

value.

• Crossover is an operation that can be defined on pairs of bit-strings. Sim-

ple one-point crossover takes two strings (of the same length), picks a ran-

dom location in the middle, and swaps the two halves, to create two new
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strings. Formally, for two strings, (a1, a2, ..., al) and (b1, b2, ..., bl), pick a ran-

dom i∈{1, 2, . . . , l − 1}, and return (a1, ..., ai, bi+1, ..., bl) (b1, ..., bi, ai+1, ..., al).

For example, crossing 10010 and 00100 at position i = 2 produces the strings

10100 and 00010.

• Mutation is simply flipping some bits in a string. It is carried out with prob-

ability p, independently, on every bit in a string.

In fact, the GA has proven effective enough as an optimization algorithm to

be applied to many performance-driven applications. The basic GA optimizes on the

space of bit-strings of a specific predefined length, and operates as follows (adapted

from [19]):

1. Initialize a population of n random bit-strings, all of a particular predefined

length.

2. Compute the fitness of every instance in the population.

3. Until n instances have been created, select (with replacement) two instances

from the population as an increasing function of fitness. With some predefined

probability, cross them to create two new instances (otherwise keeping them

intact). For odd n, discard a random instance.

4. Mutate all of the new instances.

5. Replace the old instances with the new ones.

6. Goto step 2.

To understand how the GA works, consider the case where crossover and mu-

tation are non-existent (i.e., their probabilities are set to zero). In this case, the GA

will eventually replace the entire population with copies of the fittest instance(s) in

the initial population. The hope is that crossover and mutation will occasionally

produce instances with improved fitness, allowing the search to progress. Somewhat

surprisingly, they indeed do so for many problems of interest. This is taken up again

after the introduction of genetic programming in the next subsection.

For a more detailed account of the genetic algorithm, see Mitchell’s excellent

introduction [19].
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1.2 Genetic Programming

Genetic programming is similar to the GA in utilizing the three basic operations of

selection, crossover, and mutation. However, the GP was designed from the beginning

to be applied to problem-solving; in this case, automatically producing computer

programs to serve a particular function. Instead of bit-strings, GP typically operates

on an open-ended representation known as “parse trees” or S-expressions. An S-

expression can be defined recursively based on a predefined set of terminals (e.g.,

x, y, z) and functions (e.g., +,−, /, ∗, IFELSE, <). Each function has a predefined

arity (> 0). An S-expression is either a terminal, or an ordered list where the first

item is a function, and the remaining items (equal in number to the function’s arity)

are S-expressions. Some sample S-expressions are:

+ IFELSE * z

/ \ / | \ / \

- 3 > z + x y

/ \ / \ / \

x * x y z y

/ \

y z

These correspond to the functions:

(x − (y ∗ z)) + 3 (x > y) ? z : (z + y) x ∗ y z (1.1)

An important property of standard GP systems is closure. This means that

any function can take as an argument the output of any other function or terminal.

So in the second example from the left above, for instance, IFELSE can be defined

as taking three numbers, and returning the second if the first is non-zero, else the

third. > can be defined as taking two numbers, and returning 1 if the inequality

holds, else 0.

Selection operates the same for GP as for the GA, with a fitness function

defined on S-expressions rather than bit-strings. Crossover is somewhat different;

since two trees may have totally different shapes, it must two-point rather than one-

point. Random subtrees are chosen from each of the two trees (one each) and swapped

to create two new trees. A subtree can be any non-root node. For example, if the
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two leftmost trees above were being crossed, we might pick the following subtrees for

crossover:

- +

/ \ / \

x * z y

/ \

y z

The new trees would then be:

+ IFELSE

/ \ / | \

+ 3 > z -

/ \ / \ / \

z y x y x *

/ \

y z

Mutation works similarly to the GA case. Typically, a random node is replaced

with a new node with the same arity drawn from the set of terminals and functions.

The basic GP algorithm is the same as that given for the GA. Mitchell’s introduction

to the GA [19], mentioned above, also contains a discussion of genetic programming.

For the canonical account, see Koza’s seminal work [16].

1.3 Schema Theory

A GA schema is a candidate solution (string) where some of the values may be ?

(don’t-care). The fitness of a schema is defined as the average fitness of all the

strings that match it (by replacing the ?s with actual symbols). According to Hol-

land’s schema theory [13, 19], GA works by implicitly maintaining and recombining

fit schema in parallel. Schema theory gives some approximations for the number of

schema a given GA system can manipulate; see [19] for details. Schema are also

known as “building blocks”. Although there are some cases where the schema theory

does not appear to be valid [4], by and large is accepted as an explanation of when

and why the GA works [19].
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Several similar theories have been proposed for GP, although the definition of

a schema is not as straightforward. Whatever a GP schema is, the intuition is that

GP works by recombining them in way comparable to the GA. Recently, it has been

proposed by Rosca [27] that there are two fundamental kinds of schema in GP “top

down” schema, defined by absolute tree position, and “bottom up” schema, defined

by of relative position subtrees. To clarify, consider the trees below:

+ +

/ \ / \

a - a +

/ \ / \

42 * * 9

/ \ / \

b c b c

They both share the absolute-position schema +(a, ?), and the relative-position schema

∗(b, c) (i.e., b ∗ a). There is significantly less consensus in the GP community with

respect to the GA community on the applicability of schema theory. See for exam-

ple [2], which questions the role of crossover in GP (and hence whether or not GP

works by using crossover to manipulate fit schema).

1.4 The Bayesian Optimization Algorithm

The Bayesian Optimization Algorithm (BOA) is a qualitative improvement over the

GA that moves beyond the metaphor of biological evolution, by maintaining an ex-

plicit centralized probabilistic model of the population of “good” candidate-solutions.

Such algorithms are called probabilistic model building genetic algorithms (PMB-

GAs).

To understand how BOA works, let’s first consider the case where the value at

each position on a string makes an independent contribution to the string’s overall

fitness. With no other knowledge, the optimal way to generate a new string is to

randomly assign a value to each position drawn from the distribution encoded by

all of the strings we have evaluated so far, weighted by fitness. Most problems,

unfortunately, do not possess this convenient feature; the fitness contribution of a

particular value at a particular position depends, to a greater or lesser extent, on

those in other positions. BOA attempts to dynamically discover these dependencies
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between positions and utilize them in instance generation; instead of drawing from

the entire distribution, we use conditional probabilities. By preserving important

dependencies when new instances are generated, BOA can perform a more focused,

effective search of the solution space.

Let’s get more specific; BOA, as originally introduced [24], is a member of

the family of “population-based search algorithms” [23], along with the GA, where

instances are represented as bit strings. BOA significantly outperforms the genetic

algorithm on a range of simple optimization problems by maintaining a centralized

probabilistic model of the population it is evolving. When an initial population has

been evaluated for fitness, BOA seeks to uncover dependencies between the variables

that characterize “good” candidate solutions (e.g., the correct value for position 5 in

the genome depends on which value is in place at position 7). In this way, it is hoped

that BOA will explicitly discover and utilize probabilistic “building blocks”, which

are then used to generate new candidate solutions to populate the next generation.

Different variations on BOA can be obtained by using different types of probabilistic

models, but the basic algorithm remains the same (adapted from [24]):

1. Generate a random initial population P(0)

2. From the promising instances in P(t) learn a model M(t)

3. Generate a new set of instances O(t) from M(t)

4. Merge O(t) and P(t) according to some criteria, creating P(t+1)

5. Iterate steps (2) through (4) until termination criteria are satisfied

New instances are generated by sequentially assigning each variable. The value

that each variable takes is chosen based on the values of the variables that they depend

on; hence, there must be no dependency cycles (e.g., if we need to know the value

of A to select the which value B will take, we must be able to compute the value

of A without knowing the value of B). This implies that there is an ordering of the

variables, a1a2... such that every ai depends only on a1...ai−1.

Hierarchical BOA is BOA with two additions: a niche-friendly replacement

scheme called restricted tournament replacement (RTR), and the use of decision

graphs [26, 21] to model dependencies, introduced in [25]. Our implementation uses

decision trees, based on the findings of [20] that they produce equivalent results.
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Decision trees are used as a way of partitioning the population’s distribution of a

particular variable’s values based on the values of other variables in the population.

For example, if our genome has two positions, and the decision tree for the

second variable splits on the first variable, the population (01, 11, 10, 00, 00) will be

divided into (01, 00, 00) and (11, 10). So in choosing a value for the second variable,

we would look at the value for the first variable (note that this must already be

instantiated). If the first variable is 0, the value for the second variable will be

drawn from (1, 0, 0), so P (0) = 2/3, P (1) = 1/3, and if the first variable is 1, the

distribution is (1, 0), so P (0) = 1/2, P (1) = 1/2. In more complex genomes of course,

decision trees can be more elaborate, with multiple splits based on different variables

partitioning the distribution into many subsets.

Following this algorithm, when new instances are generated, good collections

of variable assignments will be preserved, if the modeling is accurate. Thus, BOA can

explore new areas of the search space in a much more directed and focused way than

GA/GP, while retaining the positive traits of a population-based search algorithm

(diversity of candidate solutions and non- local search).

In practice, constructing the optimal decision trees is intractable [26, 25]. In-

stead, a scoring metric is used to greedily add edges to initially empty trees, taking

care to avoid adding edges which would produce dependency cycles.
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Chapter 2

Generalizing BOA

This chapter is the meat of the thesis, describing the challenges needed to adapt BOA

to learning computer programs, and how they have been overcome.

The first question addressed, with a relatively straightforward answer, is:

• How can we model non-binary variables?

Clearly we could encode anything we’d like to in sufficiently large binary strings, but

this is usually not the best approach. The next series of questions tackled is more

open-ended, and will not admit straightforward, direct, solutions:

• What is a variable? In fixed-length strings the answer is clear, but for trees we

have the problem of absolute tree position vs. relative position (manifested in

the two GP schema types described in chapter 1).

• How to deal with alignment of different sized/shaped trees?

• How to deal with unified modeling of operators with different type signatures and

ensure that type-correct trees are generated?

• What will drive the instances in the population to grow/increase in complexity

(i.e., recombine bottom-up schemata)?

2.1 Beyond Bits

Previous work by Ocenasek [20] includes an approach extending binary BOA to fixed-

length strings with non-binary discrete and continuous variables (individual variables
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prespecified to be either discrete or continuous). The principal obstacle that must

be overcome is here is that the scoring metric and types of splits used must be able

to handle pairwise combinations of discrete and continuous variables (i.e., decision

tree nodes that split the distribution of a discrete variable based on the value of a

continuous variable, discrete based on discrete, continuous based on continuous, and

continuous based on discrete). There are a number of types of splits that can be

considered. For example, we can split a tree using a discrete variable with n possible

values into anywhere from 2 to n leaves. The Bayesian-Dirichlet metric described

in [11] and adopted by Ocenasek is utilized, which generalizes nicely to characterize

hybrid discrete-continuous splits. This is a start toward getting BOA to work on

program trees; we can use continuous variables directly, and use discrete variables to

encode operators and terminals.

However, there are still some fundamental issues that need to be dealt with.

We must allow for discrete and continuous values in the same position. In order to

split on such variables, the most natural solution is to introduce a predicate indicating

whether the variable is discrete or continuous. After splitting on such a predicate, it

is then possible to split again on the values themselves. For example, after splitting

the distribution of Y into one leaf where X takes only discrete values, and one where

X takes only continuous values, the former could then be split again into a leaf where

X is 1, 3, or 5, and one where X is 0, 2, or 4, and the latter could be split into a leaf

where X < 3.2 and one where X > 3.2.

In addition to splitting on these variables, we must be able to instantiate them

(i.e., maintain decision trees representing hybrid discrete-continuous variables). The

natural solution now is to first split such a tree on whether its own value is discrete or

continuous. And how do we decide which one it is? We can represent it using another

decision tree! So for each hybrid variable X we have two trees; one which maintains

a distribution over whether X is discrete or continuous (a type tree), and a second

value tree which maintains X’s actual distribution and is split based X’s type.

2.2 Beyond Fixed-Length Strings

A serious issue that must be addressed is that BOA works on fixed-length strings,

while GP typically uses variable-shaped trees. Thus, there is no consistent addressing

scheme as there is for strings (e.g., if operators have different arities). We have

considered two general solutions to this difficulty.
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The first is a variation of gene expression programming (GEP) [8], where a

linear, fixed-length genotype is used to represent a variable-sized tree phenotype.

This was found to be acceptable for simple problems, but we consider this approach

unscalable, due to the nature of the modeling process used by BOA. The difficulty is

that the values for leaves that are in the same position on the tree may be in stored in

different positions on the linear genome. Thus, BOA will not have any knowledge of

their correspondence, and will have difficulty modeling them correctly. This difficulty

is exacerbated as both problem complexity and tree size grow.

A second (partial) solution to this problem is to represent program trees in

the curried form used by some functional programming languages [9, 36], where all

function applications are single argument. So for example, + is viewed as an operator

that takes a number as its argument, and returns an operator that takes a number

as its argument, and returns a number. This binary application operator is denoted

by @, and lives in all of internal nodes in our trees. See below for an example of this

representation (right) and the standard GP tree form (left).

+ @

/ \ / \

2 3 @ 3

/ \

+ 2

The obvious thing to do now is to create a separate variable for each unique

address where variables are found. By address we mean the descending path taken

from the root of the binary tree to reach a particular position, e.g., right-right-left-

right, denoted by (0010). The root address is (). Consider the following population:

@ @ 3.2 @ @ x

/ \ / \ / \ / \

log 2 sqrt x sin 7 * @

/ \

3 x

the distribution at the address () is @, @, 3.2, @, @, x, at (1) is log, sqrt, sin, ∗, at (0)

is 2, x, 7, @, at (01) is 3, and at (11) is x. The main problem with this approach is

generating new instances that are guaranteed to be syntactically correct. For example,

BOA could decide to put x at () and 2 at (0). The solution to this is for each decision
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tree representing a variable’s type other than the root address to be split on whether

or not its parent is a leaf; if it is, then instantiation of the tree, as well as of its

value tree, leads to a “null leaf”, and no value is instantiated. Otherwise, a value

is always instantiated, ensuring that all @ nodes, and no leaves, have their children

instantiated. This approach was more effective than the first one, but still ineffective,

and not entirely satisfying.

There is a fundamental distinction here between the GA case and the GP

case; as described in chapter 1, the definition of a schema for fixed-length GA is

fairly straightforward, whereas there is compelling evidence that there are two types

of schema for GP; top-down schema corresponding to absolute tree position, and

bottom-up schema, corresponding to relative position subtrees [27]. Since absolute

tree position is sometimes relevant and sometimes not, one would like a system to be

sensitive to this. The right way to do this is to allow the system to construct models

that can vary the absolute position in which particular values end up (as in the gene

expression programming solution), while keeping the semantics of different variables

relatively intact (as in the absolute position example).

2.2.1 Zigzag Trees

As a solution a new representational scheme is introduced here, zigzag trees, which

are a special kind of binary tree.1 Let ZN denote the set of zigzag tree with N leaves,

using leaves drawn from the set L. This set can be defined inductively as follows.

For N = 1, it is L. For N > 1, it the union of @(l, t) and @(t, l), where l is drawn

from L, and t is drawn from ZN . That is to say, zigzag trees are an intermediate

form between left-deep and right-deep linear trees. So a zigzag tree of size N can be

encoded as a list of N leaves, and a list of N−1 Boolean values (whether to zig or zag

at a particular location). Here are for some sample zigzag trees and their encodings

(L means zig left, R means zag right).

1After defining this kind of tree and coining the name, I discovered that they had already been
defined, with the same name, for a completely different purpose (speeding up parallel database
queries) [38].
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@ @

/ \ / \

@ x @ 3

/ \ / \

+ @ @ 42

/ \ / \

@ x if @

/ \ / \

* @ @ x

/ \ / \

@ x < 3

/ \

+ @ [ < 3 x if 42 3,

/ \ R R L R R ]

@ x

/ \

* x

[ x * x + x * x + x,

L R L R L R L R ]

Now, what does representing programs as zigzag trees for BOA learning buy

us? First of all, programs can be represented more concisely, since internal nodes are

now implicit. Second, model position has been (partially) decoupled from absolute

tree position.

This can now be modeled very naturally by BOA. For a population with a

minimal instance size M (i.e., M leaves), and a maximal instance size of N , there will

first be N−M Boolean variables used to model instance length each dependent on the

next. The semantics of these variables will be “instance has at least k leaves”. Once

one variable in the sequence has been set to false, all of the remainder automatically

go to false (since they are dependent), which makes sense, since if a tree doesn’t

have > k leaves, it clearly can’t have > k + 1, etc. leaves. There are also N − 1

Boolean variables to determine where the tree zigs and zags (i.e., how the tree is

constructed from the linear sequence). Finally, there are N leaf models, as described

in the previous section (deciding if a value is a discrete symbol or a continuous value,

then modeling the symbol/value content). These models are set up so that for a
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particular position, the instance length variable must be set before the leaf value is

set, so that we never set the values of non-existent leaves.

Note that, when simple conditions are met, zigzag trees are fully general, and

can represent anything that can be represented with a binary tree. When no higher-

order functions are used, in fact, they are overgeneral, in the sense that a simple

right-leaning list of nodes can represent any function (see the next subsection for an

explanation). For the case where higher-order functions are present, it can be proven

that with the addition of a couple of simple rewrite rules (combinators) to the leaf

set, any binary tree with N leaves will have an equivalent zigzag tree with at most

2N leaves; see chapter 5 for more details, and appendix A for the proof.

2.3 Sloppy Program Evaluation

One further difficulty that must be overcome in adapting BOA to modeling computer

programs is types. BOA can very easily produce syntactically incorrect structures

such as @(@(@(+, 42), ∗), 2) (note that this is different from the syntactic requirement

mentioned earlier of not inserting leaves in place of application nodes). Three general

solutions exist to this difficulty; the first is to simply discard any such incorrect

instances that are generated, the second is to introduce modeling on types, and the

third is to use a more general evaluation scheme that can evaluate such incorrect

expressions. The solution chosen here is the third, which seems to provide the most

natural fit to the rest of the system.

Sloppy program evaluation works as follows (recall that all applications are

binary). In applying A to B, where @(A, B) is valid, it is returned. If it is not,

but @(B, A) is valid, that is returned instead. If neither is valid, the interpreter will

“listify” A and B, meaning that they are merged into a single node containing a list

of entities, with the left-most item coming first. Lists are treated as a single entity,

with the left-most item being used for application. When one list is called on another,

as many evaluations as possible are executed, moving from left to right.

Note that operators (e.g., +,−, ∗, /), might receive only a single number; in

this case the number is held “in reserve” until another is found and the operator can

be evaluated. A short example follows, utilizing the convention that unparenthesized

applications are left-associative:

42 + (+ -) (3 4) 9 8 *
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First 42 and + are inverted, while (+ −) and (3 4) are listified separately, to obtain:

+(42) [+, -] [3, 4] 9 8 *

The first two items must now be listified:

[+(42), +, -] [3, 4] 9 8 *

Now, when the two lists are merged, +(42) is given the argument 3, to produce 45,

which can be applied to the next + along with the argument 4, producing 45+4 = 49.

This now becomes the first argument to the minus sign:

-(49) 9 8 *

The 9 is now fed to the −(49) to obtain:

40 8 *

[40, 8] *

320

Note that such a program might return multiple values or no values at all. In the

former case we can adopt the convention of using the leftmost result. In the latter

case, the instance is assigned zero fitness (this is extremely rare in practice).

2.4 Incremental Program Construction

Unfortunately, while the BOA variant described in the previous sections is effective

at optimizing small subcomponents, and keeping components correctly intact, it does

not, on its own, lead to the addition of new components. This is because there is no

way to grow trees beyond the size of the largest tree in the population, and there is

no way to move components to entirely new tree positions (although small changes

can be accomplished in zigzag trees, by switching between zigs and zags).

To overcome this, a low-frequency two-point crossover operator (20% in all our

experiments) has been added, which can cause trees to grow, and suffices to move sub-

components to new locations, where they can be optimized by BOA2. This overcomes

the limitations of a pure probabilistic-variable-based approach, while maintaining its

advantages, since instance generation is still by and large much more focused than it

would be when using crossover and mutation exclusively. Also, we can start with a

population of smaller trees, and have them naturally grow to fit the problem size.

2Two-point crossover mimics the behavior of GP crossover by swapping two random substrings
of a zigzag tree (the leaves as well as the left/right zigzags).
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2.5 Summary

The novel features of this research can be summarized in the form of brief answers to

the questions with which we began this chapter:

• How can we model non-binary variables? Utilize Ocenasek’s scheme [20] for

modeling discrete and continuous variables, with additional type trees to allow

discrete and continuous values to coexist in the same position.

• What is a variable? Separate tree structure from tree data and model them

with different variables. This is accomplished by having curried operators live

in the tree leaves and binary application nodes at all internal positions in the

tree (ala functional programming), and introducing combinators (in the leaves),

which can modify tree structure.

• How to deal with alignment of different sized/shaped trees? Simplify the model-

ing process by using zigzag trees, a subset of binary trees, which can be encoded

as linear genomes and are provably general in that any binary tree can be con-

verted into an equivalent zigzag tree using combinators (see A). The worst-case

overhead, in term of tree size, is to double the number of leaves.

• How to deal with unified modeling of operators with different type signatures

and ensure that type-correct trees are generated? Evaluate sloppily dynamically

transforming syntactically incorrect trees into a nearby correct ones in the course

of evaluation, with very little overhead.

• What will drive the instances in the population to grow/increase in complexity

(i.e., recombine bottom-up schemata)? Use two techniques, corresponding to

absolute (top-down) and relative-position (bottom-up) schema; BOA for the

former, and zigzag tree structure combined with relative position crossover for

the latter.
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Chapter 3

Comparison with Prior Work

3.1 BOAP’s relationship to BOA

Clearly, the prior work which BOAP owes the most to is BOA/hBOA [24, 25, 22],

and Ocenasek’s extension thereof [20]. The extent to which BOAP modifies the basic

BOA/hBOA algorithm is been covered in the previous chapter.

3.2 BOAP’s relationship to other PMBGPs

The field of probabilistic model building genetic programming (PMBGP) [30] is quite

new, but there are already several approaches, which are compared and contrasted

with BOAP, below.

3.2.1 Probabilistic incremental program evolution (PIPE)

An early PMGP was probabilistic incremental program evolution (PIPE) [28], later

extended to hierarchical PIPE (hPIPE) [29]. PIPE uses standard GP function trees

(S-expressions) as its representation. Instead of crossover, new trees are generated

by drawing, in a depth-first fashion, terminals and leaves from the distribution at

each (absolute) tree position, with an additional mutation operator. hPIPE allows

subtrees to be stored in individual tree positions.

In comparison with BOAP, the primary limitations of PIPE and hPIPE are the

fixed complexity of their models (no dependencies learned between positions), and

the complete reliance on absolute position. Furthermore, using S-expressions means

that arguments to functions with different arities are modeled together in a fairly
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arbitrary way. For example, in the two trees +(A, B) and sqrt(C), C is modeled as

overlapping with A rather than B (since they are both the first argument). Using

curried form avoids this kind of arbitrary alignment.

3.2.2 Grammar-based approaches

Other recent work [31, 32, 5], uses more complex models, in the form of program

generation grammars.

For example, program evolution with explicit learning (PEEL) [31], learns a

grammar with ant colony optimization. In contrast to PIPE and EDP (see below),

PEEL, is capably of learning variable-complexity models with an arbitrary number

of production rules. However, the expressiveness of these rules is extremely limited;

they can only “split” the distribution based on location in the tree, not based on tree

content. For example, let’s say that in a particular location some trees utilize +, while

others utilize ∗. PEEL cannot express the notion that the numerical arguments are

dependent on the choice of operator, and should be drawn from different distributions.

Of course, it might be possible to add this kind of expressiveness in the future, along

with a metric for deciding when such a split was worthwhile, making the resultant

learning mechanism more BOA-like. As has been pointed out [31], PEEL has a

desirable feature which it shares with BOAP; unlike in GP, there is no impetus for

code bloat. On the contrary, more compact instances are more likely to be modeled

and reproduced correctly.

PRODIGY [32] is a generalization of the PEEL approach which uses a stochas-

tic context-free grammar (SCFG) and is agnostic with respect to how the grammar is

learned. Bosman and de Jong [5] have reported on a similar SCFG-based approach.

3.2.3 Extensions of PIPE

Recently, systems described as performing estimation of distribution programming

(EDP) [34, 35] have been developed which extend PIPE by taking note of dependen-

cies (still between absolute positions in S-expressions). Unlike BOAP, these are not

learned, but hardwired in a particular topology with fixed complexity (e.g., nodes

are always dependent on their parents). This is closer to BOAP, but still much more

primitive, and the limitations of PIPE mentioned above still apply.

Another generalization of PIPE is extended compact genetic programming

(eCGP) [30], which is closer to BOAP in that the structure of the model can vary;
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instead of generating from an independent distribution for each node, nodes can be it-

eratively merged based on an MDL metric (instantiation for a group of merged nodes

is done according to the joint distribution). This is more expressive then PIPE; how-

ever, as with PEEL, dependency modeling is still not very fine grained; there is no

way to restrict the dependency between a pair of variables to a particular context

(as in BOAP), as they are either merged (completely dependent) or not (completely

independent).



19

Chapter 4

Experiments

In all of the following experiments, BOAP is configured to generate a new population

as described by Pelikan [24, 22], namely, by combining the top half from the previous

generation with new instances generated from the model. As mentioned previously,

the crossover operator is then applied to a random selection of 20% of the instances,

with the exception of the single best instance in the population. Instances have been

limited to 128 leaves, though this is rarely reached.

4.1 Symbolic Regression with Constants

To simply compare a number of configurations, a series of experiments have been

run on fifty random linear functions f(x) = ax + b, where a and b are drawn uni-

formly from [−5, 5], and x is in the interval [−1, 1]. As is typical in[16], each fitness

evaluation consists of evaluation of absolute error against a fixed set of twenty ran-

dom points. A total of 25,000 fitness evaluations are allowed per run, spread over

40 generations. The terminals are x and the ephemeral random constant, and the

functions are +,−, ∗, /. Here, unlike in the following two sections, the point is not

to demonstrate BOAP’s superiority to competing methodologies, but rather to show

the combined effectiveness of the various techniques presented (i.e., modeling with

learning of dependencies, and zigzag trees), for a fairly arbitrary and not carefully

tuned set of parameters. “Empty Models” refers to applying BOAP without learn-

ing any dependencies between variables, This means that the values for variables

are drawn from the entire distribution at that location (as in PIPE; see chapter 3).

“No Modeling” is 90% crossover (with population size adjusted accordingly), and

no model-building or instantiation (i.e., GP on zigzag trees with sloppy evaluation).
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Table 4.1: Symbolic Regression with Constants
Success Rate Average Error

BOAP 0.62 0.471±0.2655
Empty Models 0.14 1.05±0.338
No Modeling 0.00 2.33±0.654

Figure 4.1: Symbolic Regression with Constants

Average error is the sum of absolute errors over the data points with 95% confidence

intervals.

As can be seen from the table and figures, BOAP is fairly effective at learning

this class of functions, and for zigzag trees at least, learning constants via modeling

is more effective than via composition. Success is defined as in [16], as being within

0.01 of the target value for all twenty points. Note that for simple problems like this,

BOAP is generally inferior to GP. It is only on problems difficult enough to warrant

a large number of fitness evaluations (and hence a larger population size for BOAP)

where GP is outdistanced. We shall explore two such problems below.
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4.2 Sunspot Time Series Prediction

A well-studied time series prediction problem is the yearly sunspot data for 1700-

1979. It is a useful candidate for BOAP testing because published benchmarks are

available for PEEL [31] and GP [16]. In order to allow for meaningful comparison to

these results, fitness was calculated using the error measure:

1

σ2
· 1

n
·

n∑
i=1

(xi − x̂i)
2 (4.1)

where n is the number of data points, the xi are the values, and σ2 = 0.41056

is the variance of the entire dataset. In [15, 31], 600,000 fitness evaluations are used

per run. Here, we use a total population size of 10,000, and a crossover rate of 0.2

(meaning 6,000 fitness evaluations per generation, since 40% of the population will

be copied without modification). BOAP runs for 98 generations and hence utilizes

598,000 fitness evaluations (6,000 per generation, and 10,000 for initialization. As

in [31], 15 independent runs were carried out. The only terminal is x, and the oper-

ators are +,−, ∗, /, sin, cos, log, exp.

Note that better results can be achieved on this problem with other methods

(e.g., back-propagation neural networks [33]). We are concerned here with how BOAP

compares to PEEL and GP under roughly identical circumstances. It is important to

note in this regard that there is some ambiguity as to which fitness cases are included

in which time periods. In particular, there is a peak at the beginning of the second

test set which is ignored in the test scheme used by PEEL (and adopted here) which

significantly degrades the accuracy of many of these models (learned by GP, PEEL,

and BOAP). Also, PEEL and GP were configured somewhat differently; only 10 runs

of GP were carried out, and four were excluded from the data given here due to poor

performance. Furthermore, PEEL was given the previous six data points with which

to make a prediction, whereas GP was given at least eight. In these cases of conflict,

we have consistently chosen to follow the configuration taken by PEEL, to ensure

that this comparison is a meaningful one.

The “best” instance given is the best on the training data. Two generations

later (generation 100) on this run, BOAP discovered an instance with slightly better

training performance that reduced the error score to 0.125 on (1921-1955), and only

0.117 on (1956-1979), outperforming both PEEL and GP (’x’ in the figure).
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Figure 4.2: Sunspot Time Series Prediction
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Table 4.2: Sunspot Time Series Prediction
Training Generalization Generalization

(1700-1920) (1921-1955) (1956-1979)
BOAP 0.124±0.007 0.169±0.018 0.289±0.06

BOAP best 0.107 0.134 0.202
PEEL 0.137±0.016 0.185±0.039 0.291±0.071

PEEL best 0.115 0.150 0.184
GP 0.125±0.006 0.182±0.037 0.37±0.06

GP best 0.118 0.127 0.329

4.3 Gene Function Inference

This set of experiments turns to a new and challenging supervised categorization

problem: the automated placement of human genes in functional categories based

on gene expression data. Only a brief background overview is given here (a paper

focusing exclusively on this problem is in preparation, in collaboration with Ben

Goertzel and Cassio Pennachin, who are coauthors the background material below).

In order to cope with the vast amounts of new bioinformatics data made avail-

able by new biological technologies, researchers have developed a variety of tools,

including controlled vocabularies for discussing biological phenomena, and collabo-

rative knowledge bases constructed using these vocabularies. One such effort is the

multi-organism Gene Ontology (GO) project, which presents collections of terms di-

vided into three ontologies: cellular component, biological process, and molecular

function [6]. Each of the ontologies is a directed acyclic graph (DAG), in which terms

are linked to other terms via specialization and part-whole relationships. Proteins

are associated to GO terms according to knowledge of their biological roles.

The GO is powerful but far from complete, a fact that presents a number of

interesting computational problems. While the online GO databases are reasonably

extensive, not all genes discussed in the literature have been assigned a position

in the GO hierarchy. Also, there are a large number of genes that have not yet

even been discussed in the research literature (let alone placed in the GO). Gene

expression microarrays are one among a number of recent technologies that allow us

to acquire quantitative data on the whole-genome level. This data can be used to

make educated guesses regarding the correct GO classification for genes that have

not yet been categorized by humans. If a little-explored gene belongs in a certain GO
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Table 4.3: Gene Function Inference
Gene Ontology Category BOAP In-Sample BOAP Out-Of-Sample

Catalytic Activity 0.729±0.009 0.464±0.025
(GO:0003824)
Intracellular 0.766±0.01 0.526±0.027
(GO:0005622)
Ribosome 0.907±0.005 0.814±0.022

(GO:0005840)
Cell Growth/Maintenance 0.751±0.016 0.5084±0.043

(GO:0008151)
Metabolism 0.773±0.007 0.549±0.023
(GO:0008152)

category, then one may be able to tell this based on its expression levels obtained in

various cells and experimental conditions.

Allocco et al [1] have explored the relationship between gene co-expression and

co-regulation, using microarray and transcription factor binding data. Azuaje and

Bodenreider [3] showed a reasonable correlation between gene co-expression and two

different measures of Gene Ontology similarity. The closest correlate of the current

work is that of Hvidsten et al [14] and Lagreid et al. [17], which uses a supervised

learning algorithm to place genes in GO categories based on their expression values.

Their accuracy figures are roughly comparable to ours, but their algorithm requires

gene expression time-series data, which is much less common than the static data

used here.

After preprocessing to normalize the data and limit the expression levels used

to those that might plausibly be use to infer gene ontology (84 categories), 100 positive

and 100 negative examples were selected for each category. That is, we end up with

five supervised categorization data sets with 200 data points (with 84 category values

per data point). Details on the preprocessing are omitted here, but will be included

in the in-preparation paper. GP and BOAP were both tested on this data, and

allowed 280,000 fitness evaluations each. BOAP was configured as in the previous

experiments, but with a population size of 10,000. Continuous values were utilized.

The operator set was +, −, /, ∗, <, and probabilistic OR (OR(a, b) = a + b − a ∗ b)

and NOT (NOT (a) = 1 − a). GP was configured to use the same operators, and

tested with population sizes of 1000 and 5000 (note that a population size of 5000 for

the GP is roughly equivalent to a population size of 10000 for BOAP).
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Figure 4.3: Gene Function Inference
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Three-fold cross-validation was used, with five independent runs for each con-

figuration, giving a total of fifteen runs per data set. The results were mixed; since

this is a new data set, there were no guarantees that any meaningful classification

rules could be discovered. However, BOAP found such rules conclusively on one set

(Ribosome), and suggestively on two of the others (Intracellular, and Metabolism).

GP failed to achieve results above chance on any of this data (none of the training

accuracy levels were over 51%), as did a preliminary investigation utilizing support

vector machines. One final thing to note is the pleasing simplicity of the rules found

by BOA. For example, an effective rule discovered by BOAP for the Ribosome data

set is:

x58 / ((x55 / !(x2 OR (x28 + x79))) * x52)

Overall, the average size of the rules found by BOA here is 17 symbols.

4.4 A Note on Runtime Comparisons

Conventional wisdom in the GP community is that runtimes are typically dominated

by time spent in computing the fitness function (i.e., evaluating trees in the popu-

lation) [16]. Thus, algorithms are benchmarked, as above, by allocating the same

number of fitness evaluations to each algorithm. However, when comparing systems

with radically different instance generation mechanisms as above, this is challenged

on two fronts. The first is that the modeling overhead of BOAP might offset any

percieved gains. The second is that all fitness evaluations are not created equal: GP

may exhibits code bloat, for example, which can produce much slower evaluations for

semantically equivalent trees. If, based on the former, one were to penalize BOAP

for modeling, it would appear to be at a disavantage for the problems studied here.

In order to clarify the latter, more conclusive tests would be needed to specifically

study the instance size dynamics of BOAP vis a vis GP.

Unfortunately, runtime and profiling results are not included in [15, 31], so

a finer-grained comparison is not possible at this time. Emperically, BOAP’s C++

implementation spends about half of its time on modeling and half on computing the

fitness function. Since BOAP is gear towards more demanding problems (typically

with more expensive fitness functions), this should be considered as an upper bound

for the percentage of time BOAP will spend on modeling.



27

For at least one such class of demanding problems outside the scope of this

thesis, controling a simulated robot, preliminary results have shown that fitness eval-

uation indeed dominates modeling costs. The tasks attempted in this domain so far

have been “fetch” and the game of tag.
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Chapter 5

Conclusion

5.1 Summary

A novel extension of the hBOA algorithm, BOAP, has been developed for learning

computer programs. Effective solutions to representational problems have been de-

scribed, and the algorithm has been compared, theoretically and experimentally, to

GP and to PMBGPs. Below is a description of some further directions this research

could move in, including ongoing efforts to learn trees utilizing more powerful pro-

grammatic constructs.

5.2 Further Directions

5.2.1 Partial Evaluation, Combinators, and Zigzag Trees

While not a concern for the kind of work described in this paper, which uses the

standard set of GP operators and terminals, goals for the development of BOAP

include more ambitious utilization of functional techniques such as those described

in [36], for example, implicit recursion. We are also experimenting with combinators,

which are a kind of higher order function that always produce a new higher order

function when applied. Some combinators are defined as follows:

Ix => x Kxy => x Bxyz => x(yz) (5.1)

Wxy => xyy Sxyz => xz(yz) (5.2)
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Note that x, y, etc... can be arbitrarily complex parenthesized expressions.

Also, all combinators are curried; again, this means that S, for instance, is a function

which takes one argument (x), and produces a function which takes one argument (y),

and produces a function which takes one argument (z), and produces the result of x

applied to z, applied to the result of y applied to z. More details on combinatory logic

can be found in [7, 9]. Combinators allow programs to be expressed quite compactly.

For example, a zigzag tree evolved by BOAP with combinators and sloppiness to

solve the symbolic regression problem f(x) = x + x2 + x3 + x4, is the extremely

terse x(∗(+x)S)Wx. The reader is encouraged to try evaluating this tree as an

exercise (remember that combinators can take anything as an argument, and that

evaluation is left-associative by default). An annotated evaluation trace can be found

in appendix B.

Furthermore, a synergy of using combinators with zigzag trees is that, as men-

tioned in chapter 2, zigzag trees now become a complete representation. That is, it

can be proven fairly simply by induction that any binary tree with N leaves can be en-

coded as a zigzag tree utilizing a couple of simple combinators with at most 2N leaves

(see appendix A). As a trivial example, the non-zigzag tree f x (g y) is equivalent

to the zigzag tree B (f x) g y. For non-higher order functions this is not important,

as expressions can be written linearly without any ambiguity. For higher-order func-

tions however, being able to encode any possible tree is an important feature. This

seems to be a fairly novel direction; one previous which applies combinators in an

evolutionary computing context is [10], in the context of automated theorem proving.

5.2.2 More Powerful Modeling Techniques

Following [24, 25, 20], BOAP models a population using greedily constructed deci-

sion trees, one per variable. One possible direction for future research, somewhat

orthogonal to the present work, is replacing this with a more powerful, less greedy

learning scheme. But there is a trade-off here: decision trees are not that powerful

but learning them is fast. Replacing them with something cleverer will increase the

time required in the modeling phase of the algorithm, a cost to be balanced against

the benefit of having instances that are on average fitter. As a guess, it seems that

replacement of the decision tree learning algorithm will valuable, but only for highly

expensive fitness functions.
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More ambitiously, the entire concept of what constitutes a variable to be mod-

eled may be reconsidered; it need not be in unique correspondence with the set of

values in a particular tree position. An elaboration of this idea is presented below.

5.2.3 Beyond Optimization Algorithms

In Metamagical Themas [12], Douglas Hofstadter develops the metaphor of “twid-

dling knobs” for the kind of exploration that takes place when manipulating a fixed

representation such as an array of bits or numbers. To move beyond optimization

algorithms, one needs to focus on methods for creating, removing, and refining knobs,

what Hofstadter calls the “crux of creativity”. While Hofstadter’s view of knob ma-

nipulation for well-defined search spaces (and hence optimization and much work in

classic AI) as trivial seems an extreme position, the meta-problem of how to pose such

problems effectively is certainly is different in kind, and requires a different toolbox.

Part of this distinction is captured by the dichotomy between the straightfor-

ward definition of a schema for GA, and the nuanced difficulties involved in defining

similar abstractions for GP (see chapter 1). But what is really essential is not the

distinction between fixed and open-ended representations, but the one between algo-

rithms that rely on static assumptions regarding problem structure, and those that

can dynamically identify and exploit problem structure, on multiple levels. Different

levels of structure might be, for example, properties of all instances of the traveling

salesman problem (most general, “class level” structure), properties of all instances

of the TSP with Euclidean edge weights (intermediate), or properties of a particular

instance of the TSP (most specific, “instance level” structure). See [37] for an illus-

tration of an algorithm that exploits structure on multiple levels, albeit in a narrow

domain (the TSP). GP and BOAP, by the nature of their representations, can handle

(in principle) a much greater range of such phenomena. One could say, for example:

Hillclimbing < GA < GP < BOAP < ? (5.3)

A future system, rather than modeling raw tree variables as BOAP and all cur-

rent competing approaches do, might dynamically construct a higher-level “invariant

representation”, tailored to the problem domain and distribution at hand. This cre-

ates a feedback loop between perception (representation-building) and cognition (the

learning algorithm) as new representations (ways of seeing the problem) lead to new

learning, which in turn leads to the construction of new representations, etc...
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Appendix A

Proof of the Generality of Zigzag

Trees

Here is a brief constructive proof of the generality of zigzag trees with the addition

of a couple of simple combinators. The algorithm generates zigzag trees with at most

twice as many leaves as the input full binary tree. To the best of my knowledge, this

is a novel proof; there appears to be no prior work on the utilization of zigzag trees

in conjunction with combinators.

The proof is by induction on N , the number of leaves. For N = 1, the tree is

already zigzaggy. For any tree T with N > 1 leaves (|T | = N), let’s consider some

subtree @(l1, l2), where l1 and l2 are leaves. For any full binary tree at least one such

subtree must exist, otherwise the tree would have infinite depth (i.e., such a subtree

exists at the maximal depth of the tree). Consider the tree T ′ obtained by replacing

@(l1, l2) with a leaf node l3. Since |T ′| = N − 1, there exists an equivalent zigzag tree

Z(T ′) satisfying with |Z(T ′)| = k and k≤2(N − 1).

Let’s represent Z(T ′) as [x1, x2, ..., xk] and [z1, z2, ..., zk−1], where the xi are the

leaves, and the zi are the zigzags (Left or Right). Let’s say that l3 = xj, so 1≤j≤k.

If j = 1, we can simply let Z(T ) be [l1, l2, x2, ..., xk] and [Right, z1, z2, ..., zk−1].

The number of leaves is k +1, and since k≤2(N −1), k +1≤2(N −1)+1 < 2N , we’re

done. Otherwise, j > 1. If zj−1 = Right, let Z(T ) be [x1, ..., xj−1, B, l1, l2, xj+1, ..., xk]

and [z1, ..., zj−2, Left, Right, zj, ..., zk−1]. This tree will look something like:
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Since Bxyz => x(yz), when B is evaluated this becomes:
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/ \

l1 l2

Thus, evaluation proceeds exactly like for Z(T ′), only with @(l1, l2) in the place of

l3. That is, Z(T ) and T are equivalent. The number of leaves is k + 2, and since

k≤2(N − 1), the inequality k + 2≤2N holds, and we’re done.

The final possibility to consider now is where j > 1 and zj−1 = Left. This is

symmetrical to the case where zj−1 = Right. Instead of a B combinator however, we

will define Pxyz => (yz)x, and use it instead. This will place @(l1, l2) in the correct

position (on the left instead of on the right). Since the size of the tree is the same as

the previous case, we’re done.

In all cases then, for any tree T , there exists some equivalent zigzag tree Z(T )

with at most twice as many leaves. Q.E.D.
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Appendix B

Evaluation of x(∗(+x)S)Wx

Here is what the evaluation of x(∗(+x)S)Wx, which was discovered by BOAP as a

short representation of f(x) = x+x2+x3+x4, looks like. The evaluation order is lazy,

and the output is from an the interpreter that BOAP uses for evaluation, running in

verbose mode. Here is the expression, fully parenthesized.

(((x ((* (+ x)) S)) W) x)

The + sign binds x as its first argument, and is listified with ∗.

(((x ((* +(x)) S)) W) x)

(((x ([*, +(x)] S)) W) x)

The combinators now execute in a cascade, to produce a significantly larger expres-

sion. Note some combinators produce other combinators, etc., eventually bottoming

out in non-combinators.

(((x S([*, +(x)])) W) x)

((S([*, +(x)],x) W) x)

((([*, +(x)] W) (x W)) x)

((W([*, +(x)]) (x W)) x)

((([*, +(x)] (x W)) (x W)) x)

((([*, +(x)] W(x)) (x W)) x)

((((x [*, +(x)]) [*, +(x)]) (x W)) x)

((([*(x), +(x)] [*, +(x)]) (x W)) x)

(([*(x), +(x), *, +(x)] (x W)) x)

(([*(x), +(x), *, +(x)] W(x)) x)

(((x [*(x), +(x), *, +(x)]) [*(x), +(x), *, +(x)]) x)
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Evaluation will now proceed straightforwardly according to the rules of sloppy eval-

uation to produce a single list.

(([*(+(x, *(x, x))), +(x)] [*(x), +(x), *, +(x)]) x)

([*(+(x, *(x, x))), +(x), *(x), +(x), *, +(x)] x)

([*(+(x, *(x, x))), +(x), *(x), +(x), *, +(x)] x)

[*(+(x, *(x, +(x, *(+(x, *(x, x)), x))))), +(x)]

To extract a value from this we take the first item, omitting the leading ∗ (since it

only has a single argument) to obtain:

+(x, *(x, +(x, *(+(x, *(x, x)), x))))

Or equivalently:

x + (x * (x + ((x + (x * x)) * x))) = x + x*x + x*x*x + x*x*x*x

which is equivalent to x + x2 + x3 + x4. Q.E.D.
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